

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Solubilization of TX-100™ and PEG-PPG-PEG in Liquid Carbon Dioxide

Alexander R. Anim-Mensah^{*a}; Shamsuddin Ilias^a

^a Department of Chemical and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA

Online publication date: 30 August 2010

To cite this Article Anim-Mensah*, Alexander R. and Ilias, Shamsuddin(2010) 'Solubilization of TX-100™ and PEG-PPG-PEG in Liquid Carbon Dioxide', *Separation Science and Technology*, 45: 12, 1901 – 1907

To link to this Article: DOI: 10.1080/01496395.2010.493835

URL: <http://dx.doi.org/10.1080/01496395.2010.493835>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Solubilization of TX-100TM and PEG-PPG-PEG in Liquid Carbon Dioxide

Alexander R. Anim-Mensah* and Shamsuddin Ilias

Department of Chemical and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA

Carbon dioxide (CO₂) at the subcritical, near-critical, and supercritical states has been found to be a powerful solvent with tunable characteristics. It is currently considered an alternative solvent to the conventional organic solvents and has attracted numerous industrial activities (processes). However, CO₂ has been limited in its application due to challenges with dissolving polar macromolecules, which limits its applications. This article presents the solubilization of surfactant; octylphenol ethylene oxide (TX-100TM) and poly(ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) (PEG-PPG-PEG) in liquid carbon dioxide. The TX-100TM is solubilized in the liquid CO₂ in a programmable phase equilibrium analyzer at varying temperatures and pressures. The emulsion characteristics as well as the water capacity of TX-100TM and PEG-PPGPEG each in liquid CO₂ is predicted by using ethyl acetate as substituted solvent. For PEG-PPG-PEG and TX-100TM emulsion systems, microemulsion form at water-to-surfactant volume ratios of less than 1.0 and 1.2 with their corresponding liquid CO₂ volume of greater or equal to 94% and 94.6%, respectively.

Keywords liquid and supercritical CO₂; microemulsion; miniemulsion; near critical fluids; reverse micelles; surfactants

INTRODUCTION

In recent years, there has been growing interest in capitalizing the solvating capabilities of supercritical fluids (SCFs) in a number of applications of commercial importance. These SCFs are alternate solvents to the environmentally damaging conventional volatile organic solvents that are used in large quantities and often are very difficult to contain. Each year, over 30 billion pounds of organic and halogenated solvents are used worldwide, resulting in the emission of large amounts of these solvents into the environment (1). Several other supercritical fluids are in use, but the final choice depends on the specific application, availability, and factors such as safety, flammability, phase

behavior, solubility at the operating conditions, and the cost of the fluid (2).

Some advantages of SCFs include:

1. the achievements of separations usually not achieved by the conventional methods,
2. the extraction of thermally labile products with minimal damage (3), and
3. their inertness to most products.

Industrial application of SCFs may include:

1. the extraction of nutriceuticals, dyes and flavors (4),
2. the distillation of crude oil residues (2),
3. the production of pharmaceutical active ingredients from herbal plants avoiding decomposition (2),
4. the denicotinization of tobacco and decaffeination of coffee (4),
5. the elimination of residual solvents from wastes, and
6. the decontamination of soils (2).

Water and carbon dioxide, among other supercritical fluids, are the most available and have been found to be compatible with the earth's environment. Supercritical water is also recognized for its capacity for destroying toxic and hazardous materials, and also as a medium for chemical synthesis (5). However, applications involving water led to a huge amount of water contamination, which is discouraging its use (5). The properties of CO₂ at the subcritical, near-critical and supercritical states have been found to be environmentally benign and are employed in numerous processes. Liquid CO₂ and supercritical CO₂ (SCCO₂) have found applications in the fields of separation, extraction, cleaning, fractionation, and synthesis with extensive applications in polymer science and engineering (5). Despite the advantages of liquid CO₂ and SCCO₂, they have limited applications involving polar or ionic or water-philic substances and macromolecules (6). Some applications of CO₂ to these polar or ionic or water-philic substances and macromolecules have been achieved through the use of surfactant to form of micelles. This led to extensive research for surfactants with the ability to solubilize such substances in SCCO₂.

Received 25 October 2009; accepted 31 March 2010.

*Currently with Hobart Corporation, 701 S. Ridge Avenue, Troy, OH 45374.

Address correspondence to Shamsuddin Ilias, Department of Chemical and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA. E-mail: ilias@ncat.edu

Technological breakthroughs over the last decade found CO_2 both in the liquid and supercritical states as greener alternatives than most of the SCFs (with the exception of water). Certain properties of CO_2 that have made it more attractive than the rest of the SCFs are the relatively low critical temperature and pressure, unique solvation power, higher diffusivity, tunable characteristics over a wide range of solvent quality, coupled with its availability, recyclability, low-cost, non-explosiveness, non-oxidization, non-flammability, and non-toxicity (2).

Conventionally, CO_2 was applied as a solvent for the solubilization of small organic molecules including fluorinated compounds. Recently, the emerging technology of microemulsion and reverse micelle formations has expanded CO_2 applications to solubilizing polar and higher molecular weight compounds including biomolecules.

In a number of ways, surfactants can improve the solubility of polar and hydrophilic substances and biomolecules in SCCO_2 . The role of surfactants is to reduce the interfacial tensions between these two immiscible compounds by forming microemulsions. Reverse micelle can be created by adding water to these amphiphilic molecules in SCF systems (7). Progressive addition of water to the systems swells the polar core forming unstable micelles and results in phase separation after addition of excessive water.

It has been shown that microemulsions can be created in SCFs below and above their critical points ($T/T_c < 0.75$ and $T/T_c > 1.1$) using sodium bis(2-ethylhexyl) sulfosuccinate (AOT) (8). Some surfactants form varieties of geometrical microstructures in some SCFs, and it appears that these fascinating geometries may be present in all supercritical fluids. Several different water (*w*) in-oil (*o*) spherical droplets have been formed in these fluids containing cationic, anionic, and non-ionic surfactants (8). It is known that microemulsions exist in an array of phase structures. In addition to the normal globular *o/w* or *w/o* systems for swollen micelles, various cubic and lamellar mesophases have been identified particularly at high surfactant concentration and have led to various polymerization reactions and also fabrications involving polymers of high specific surfaces (9).

The properties of these microemulsions include:

1. structural dimensions in the range of 5–100 μm ,
2. optical clarity (poor scatter of visible light),
3. good thermal stability,
4. non-static emulsion that is continuously breaking and reforming, and
5. size that is tunable by the volume of water added to the microemulsion system (2).

At low water concentrations, the microemulsions are spherical and in the dispersed phase. Typically, water volume (*v*) of less or equal to 26% ($v \leq 26\%$) of an emulsion system results in the formation of inverted structure,

termed as “reverse micelle”. Water volume in the range, normally greater than 26% but less than 74% ($26\% \leq v \leq 74\%$) forms a bicontinuous structure (also lamellar structure) while above 74% ($v \geq 74\%$) forms a normal micelle structure. The dissolution capacity of the polar or ionic substances in the micelles is thus dependent on the volume of water in the emulsion (2).

These fluids possess a high value for the dielectric constant at high frequencies that govern the intermicellar forces and also accounts for the short-range attractive forces between the surfactant tails. Reverse micelle formation in supercritical fluids possesses unique and useful properties. These include:

1. variation of the density with changes in pressure or temperature to effect changes of phase behavior of the reverse micelle system,
2. the ability to effect a change in micelle size or micelle cluster size by variation of the density,
3. high diffusivities of solutes and micelles in near-critical and supercritical fluids, and
4. the ability to control selectivity for a specific solute by variation of density (7).

The surfactant molecules used in the near-critical and SCCO_2 possess two mutually incompatible components, CO_2 -philic and CO_2 -phobic tails. The CO_2 -philic tails attract CO_2 molecules whereas CO_2 -phobic tails repels the CO_2 molecules and form a head in the core. This type of micelle is normally referred to as reverse or inverted micelle as shown in Fig. 1.

It is this core where the polar or hydrophilic species reside in the reverse micelle. By this process, most CO_2 insoluble or sparingly soluble compounds are solubilized

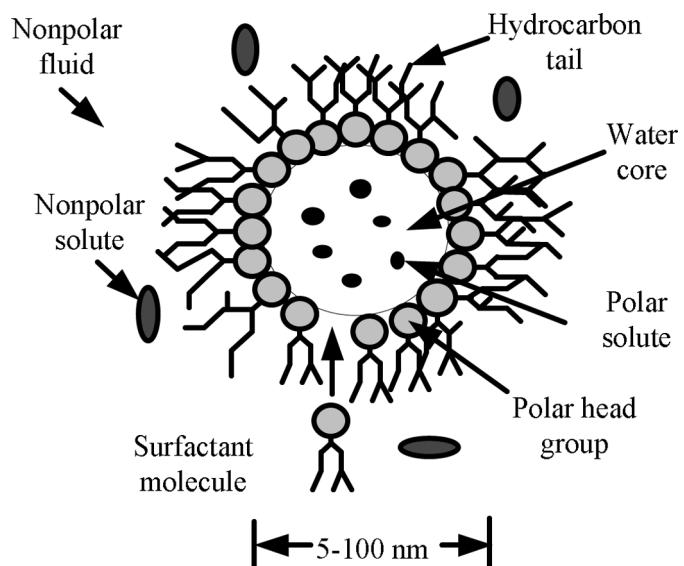


FIG. 1. Basic structure of a microemulsion and reverse micelle in CO_2 .

(10). The advantages of microemulsion and reverse micelle over the conventional micelle systems generally include the conduction of a variety of chemical reactions, extraction and separation processes. Specifically, the advantages of microemulsions include:

1. faster separation, extraction, and reaction rates because of the enhanced mass transport properties of supercritical and near-critical fluids (2),
2. diffusivities of solutes and micelles can be 5–100 times higher in near-critical liquids and supercritical fluids than they are in liquids (2),
3. the ability to manipulate reaction pathways (i.e., selectivity) or rates by varying system pressure and temperature,
4. the ability to recover products or catalysts after separation or reaction by changing system density by adjusting temperature or pressure (2),
5. the ability to separate mixtures, and controlling selectivity of separation, by varying system density, and
6. the ability to extract solutes from the liquid or solid phases at high rates, with greatly augmented recovery of the two phases after separation (2,11) All of these properties play a big role in chemical synthesis inside the reverse micelles of microemulsions.

This research investigates the dissolution of TX-100TM (octylphenol ethylene oxide) and PEG-PPG-PEG (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) surfactants in liquid CO₂. The TX-100TM dissolution is investigated under varying pressure and temperature in a phase equilibrium analyzer as well as formation of emulsions. The solubilization and phase behavior of PEG-PPG-PEG and TX-100TM each in liquid CO₂ is predicted using ethyl acetate at room temperature as candidate solvent (12). TX-100TM is used because of its excellent detergency and oil removal characteristics as well as its solubility in both water and organic solvents. Moreover, TX-100TM is effective on textiles and semiconductor wafers, and has made it very attractive for both domestic and industrial applications, particularly the dry cleaning of semiconductor wafers and integrated circuits (5). The PEG-PPG-PEG is known for its anti-releasing characteristics in addition to its solubility in both water and organics (13). It is ideal for dry cleanings involving semiconductor wafers, integrated circuits, biofilms, and biofoulants. The cleaning of biofoulants and biofilms could be aided by salts incorporated into the emulsion (14). This makes the water and organic solubility characteristics of both TX-100TM and PEG-PPG-PEG attractive for these applications.

MATERIALS AND METHODS

Materials

In this investigation, octylphenol ethylene oxide with trade name Triton X-100 (TX-100TM) and PEG-PPG-PEG

were obtained from Aldrich-Sigma. TX-100TM (MW ~625 g/mol) is slightly hydrophilic, nonionic, and biodegradable. It is used as a wetting agent and emulsifier (15). The PEG-PPG-PEG (MW~1100 g/mol) is very hydrophilic, nonionic, non-biodegradable and used as solubilizers, emulsifiers, and wetting agents (13). The PEG is larger in size than the PPG. Also, the PEG is hydrophilic while the PPG is hydrophobic, and this interesting characteristic makes PEG-PPG-PEG suitable for aqueous-organic systems. The industrial grade compressed or liquid CO₂ was obtained from the National Welder Supply Company Inc., while ethyl acetate (used as candidate solvent for the liquid CO₂) and HPLC water were obtained from Tedia Company.

The solubility measurements were carried out in a phase equilibrium analyzer (PEA-30ML) manufactured by Thar Design Technologies. The analyzer is programmable and capable of varying the density or volume of the liquid CO₂, the temperature, and the pressure of the solution system until dissolution (cloud point) is reached. The dissolution process can be studied through video visualization.

Experimental Procedure

The solubilization of TX-100TM in liquid CO₂ and SCCO₂ was carried out by placing a known amount of TX-100TM and liquid CO₂ in the solubility chamber of the phase equilibrium analyzer and varying the density or volume of the liquid CO₂, the temperature, and the pressure of the solution system until the cloud point when TX-100TM starts to dissolve.

Ethyl acetate is known to behave as liquid CO₂ (12) and it was used as a substituted solvent for CO₂ to predict the emulsion system of either TX-100TM or PEG-PPG-PEG with water in liquid CO₂. The procedure involves adding a known volume of distilled water to a known volume of surfactants and agitating until mixing. In the case of TX-100TM, distilled water at about 40°C was used to promote the dissolution while distilled water at room temperature was used for the PEG-PPG-PEG. Known volumes of ethyl acetate were added to each of the solutions of TX-100TM or PEG-PPG-PEG and agitated for uniform mixing.

The appearance of optically clear solutions after addition of ethyl acetate to the PEG-PPG-PEG or TX-100TM and distilled water solution suggested the formation of reverse micellar microemulsion. Otherwise, very small visible suspended miniemulsions, which were either stable or unstable, or larger emulsions flocculating to form separate phases were realized. Various ratios between the volumes of PEG-PPG-PEG/water/ethyl acetate or TX-100TM/water/ethyl acetate were collected and standardized for general application to systems consisting of PEG-PPG-PEG/water/liquid CO₂ or TX-100TM/water/liquid CO₂. The established ratios for PEG-PPG-PEG or TX-100TM, water, and ethyl acetate at which the different

emulsion systems formed, were used to represent the emulsion systems of PEG-PPG-PEG or TX-100TM, water, and liquid CO₂.

RESULTS AND DISCUSSION

Solubilization of TX-100TM in Liquid and SCCO₂

The TX-100TM has limited solubility in liquid CO₂ near the critical point. It was found that the solubility of TX-100TM depended on both the temperature and the pressure. The solubilization of TX-100TM in liquid CO₂ was studied in the pressure range of 67.0 and 98.8 bars at temperatures of 22.9, 24.6, and 27.4°C.

At 22.9°C and 98.8 bars, only 0.31 wt% of the TX-100TM was solubilized in CO₂. The solubilization of TX-100TM in liquid CO₂ as a function of pressure is shown in Fig. 2 at 24.6°C and 27.4°C, respectively. The solubility increased non-linearly with pressure. A small increase in temperature increases TX-100TM solubility in liquid CO₂ by several fold. At a relatively higher temperature (27.4°C), a small change in pressure results in a sharp change in solubility. From Fig. 2, an average pressure rise of about 1.8% (67.2 to 68.4 bars) resulted in about 53.0% (1.7 to 2.6 wt%) increase in TX-100TM solubility at 27.4°C. On the other hand, at 24.6°C, an average pressure rise of about 14.3% (71.1 to 81.3 bars) resulted in 71.4% (i.e., 0.7 to 1.2 wt%) increase in the TX-100TM solubility (Fig. 2).

From the CO₂ phase diagram (Fig. 3), the temperature and pressure coordinates of 22.9°C and 98.8 bars falls in the region of liquid CO₂ which has lower diffusivity and is expected to have a lower solubility compared to the supercritical region. The temperatures of 24.6°C and 27.4°C with their respective pressure ranges of 71.1 to 81.3 bars and 67.2 to 68.4 bars lie in the region of the liquid CO₂. Within the liquid region, the higher temperature

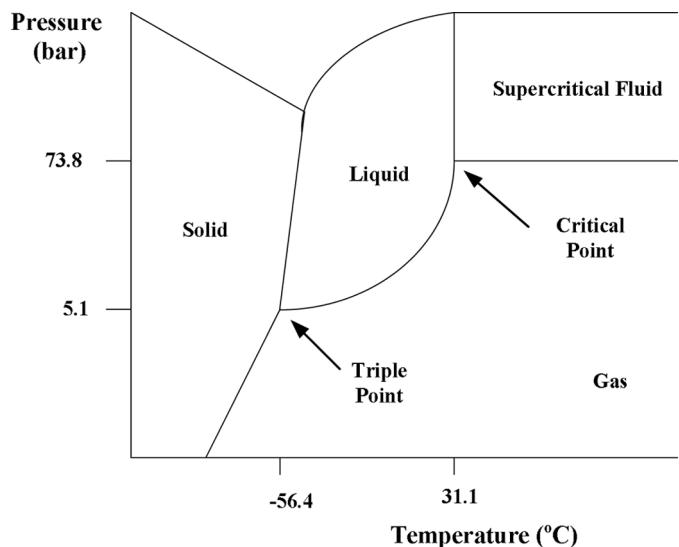


FIG. 3. Carbon dioxide phase diagram.

resulted in increased solubility as the liquid CO₂ approached that of the SCCO₂, which has higher solvation power and diffusivity. This explains why the increased temperature from 24.6 to 27.4°C resulted in considerable increase in the TX-100TM solubility, offsetting the increased pressure effects in the range of 67.2 to 68.4 bars compared to that of 71.1 to 81.3 bars. From the above observation, it can be inferred that changes in temperature have a more pronounced effect than the pressure on TX-100TM solubilization.

The temperature effects on TX-100TM solubility in liquid CO₂ are shown by a bar graph in Figure 4 where the solubilities at the temperatures of 24.8 and 27.1°C were compared at an average pressure of 69 bars. As shown in Fig. 4, for a temperature rise of 9.3% (i.e., 24.8 to

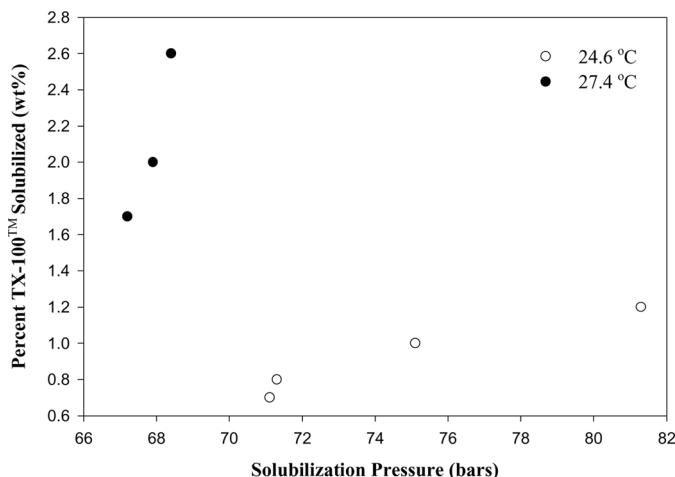


FIG. 2. Weight percent TX-100TM solubilized in liquid CO₂ with pressure at 24.6°C and 27.4°C, respectively.

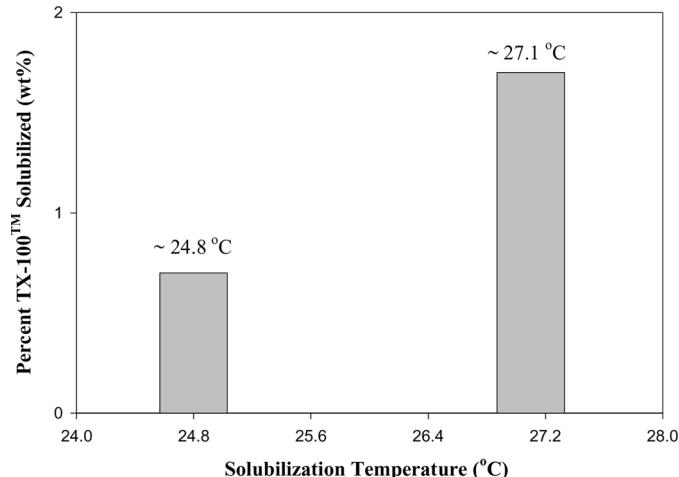


FIG. 4. Bar graph of TX-100TM solubilized (in wt%) at 69 bars in liquid CO₂ at two temperatures.

27.1°C), the solubility of TX-100TM increased by 142% (i.e., 0.7 to 1.7 wt%) at 69 bars. It is observed that the solubility increased as the temperature increased because of the increasing diffusivity of the liquid CO₂ with temperature.

Prediction of Emulsion Systems of TX-100TM in Liquid CO₂

Like other fluids, CO₂ (*c*) forms emulsion in the near-critical and supercritical state with water (7). Formation of stable water-to-CO₂ (*w/c*) or CO₂-to-water (*c/w*) emulsions depend on the properties of the surfactants occupying the interface of the water and the liquid CO₂. Ethyl acetate was used as a substituted solvent for liquid CO₂ because it behaves as CO₂ in the liquid state (12). The various water-to-surfactant (*w*) volume ratios from 0 to 2.0 at constant volume of ethyl acetate were found to form three emulsion systems of TX-100TM in liquid CO₂.

The three emulsion systems of TX-100TM in liquid ethyl acetate formed by varying the amount of water to TX-100TM at constant volume of ethyl acetate is shown in Fig. 5(a–c). Figure 5a is a picture of an optically clear stable emulsion system associated with microemulsions (typical size <100 nm). Figure 5b shows a colloidal system which is stable or unstable because of the swollen water core which could flocculate depending on the amount of water associated with miniemulsions (typical size 50–500 nm) (9). A phase separated emulsion system is shown in Fig. 5c. These phenomena can be explained by the fact that the nature of the emulsion systems depends on the interactions between the surfactant tails and the cores of the reverse micelle, which is water. In microemulsions, the repulsive forces between the tails of the surfactant are so pronounced that they overcome the attractive

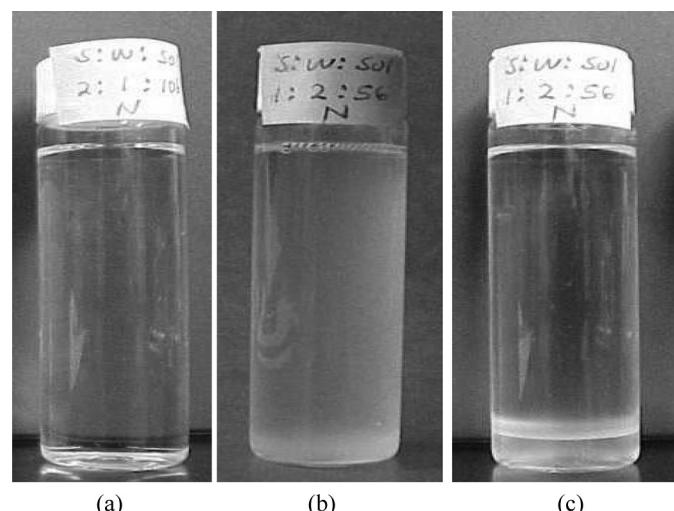


FIG. 5. Photograph of the emulsion systems of TX-100TM with water in ethyl acetate: (a) Optically clear microemulsion, (b) Miniemulsion, and (c) Phase separated emulsion system.

force between the cores of the reverse micelle, keeping the cores as far apart as possible. As the water-to-surfactant volume ratio (*w*) increases, water is introduced into the system. Above some critical point, water swells these micellar cores resulting in minimal repulsive forces. These visible emulsions are termed as miniemulsions, which could be stable or unstable depending on the extent of attraction and repulsion. Phase separation occurs as a result of the attractive forces between the cores overcoming that of the repulsive forces; and as a result, by nucleation and growth, the cores flocculate to form layers.

Based on the above criterion, it was found that microemulsions form at water-to-surfactant volume ratios of less than or equal to 1.2 ($w \leq 1.2$) with corresponding ethyl acetate volumes (*v*) of less than or equal to 94.6% ($v \geq 94.6\%$) of the system. The miniemulsions form within "w" of 1.2 and 1.4 inclusive ($1.2 \leq w \leq 1.4$) with ethyl acetate volumes of 94 to 95% ($94.6\% \leq v \leq 95\%$). Phase separation occurs at "w" greater than or equal to 1.4 ($w \geq 1.4$) with ethyl acetate volumes of less or equal 93.0% ($v \leq 93.0\%$). A pictorial representation of these observations is given in Fig. 6a and 6b for water-to-TX-100TM (*w*) and ethyl acetate volumes (*v*) in TX-100TM emulsions, respectively.

The experimental results for the three emulsion systems are presented in Fig. 7 in dimensionless form for general application to the emulsion systems consisting of TX-100TM, distilled water and ethyl acetate. Figure 7 is a plot of TX-100TM volume/water volume against water volume/ethyl acetate volume. From Fig. 7, the various proportions of the water, TX-100TM, and liquid CO₂ in a particular emulsion system could be predicted.

Prediction of Emulsion System of PEG-PPG-PEG in Liquid CO₂

To study the emulsion systems of PEG-PPG-PEG in liquid CO₂, ethyl acetate was used as substituted solvent for CO₂. The microemulsion of PEG-PPG-PEG in ethyl acetate formed by varying the water content is shown in Fig. 8a; while the phase separated emulsion system is

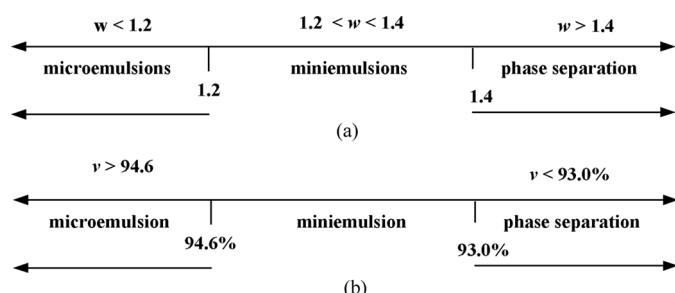


FIG. 6. (a) Water-to-TX-100TM ratios (*w*) in the various emulsion systems, and (b) Volumes (*v*) of ethyl acetate corresponding to the various TX-100TM emulsion system.

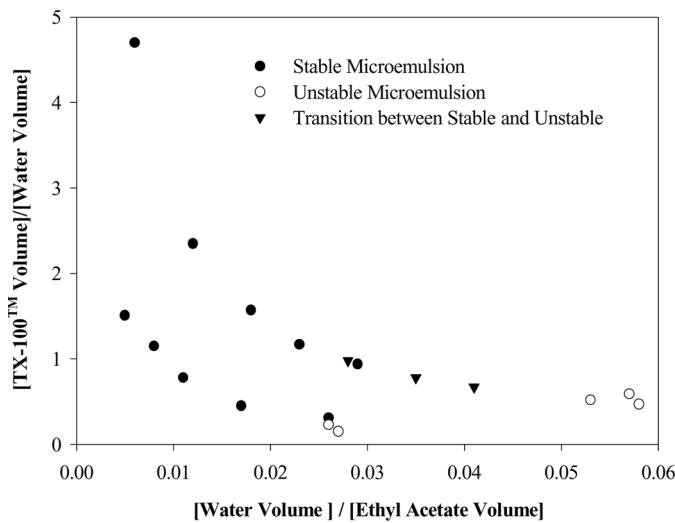


FIG. 7. Variation of ratio of $[TX-100^{\text{TM}} \text{ volume}] / [\text{water volume}]$ with $[\text{water volume}] / [\text{ethyl acetate volume}]$ for stable and unstable microemulsion system at room temperature.

pictured in Fig. 8b. The microemulsion pictured in Fig. 8a was optically clear and stable. This emulsion was formed at water-to-surfactant volume ratios (w) of less than or equal to 1.0 ($w \leq 1$) with the corresponding ethyl acetate volume of greater than or equal to 94% ($v \geq 94.6\%$) of the total emulsion systems (Fig. 8a). Miniemulsions were formed with associated visible emulsion cloudiness at $1.0 < w < 1.2$ corresponding to ethyl acetate volumes of 94% ($v \approx 94\%$). The phase separation was observed at $w \geq 1.2$ corresponding to $v \leq 94.0\%$ (Fig. 8b). These observations

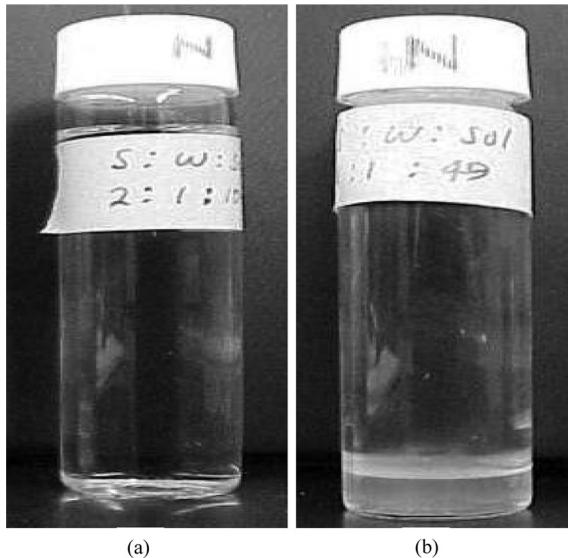


FIG. 8. Photograph of emulsion systems for PEG-PPG-PEG at room temperature: (a) Stable microemulsion system, and (b) Phase separated emulsion system.

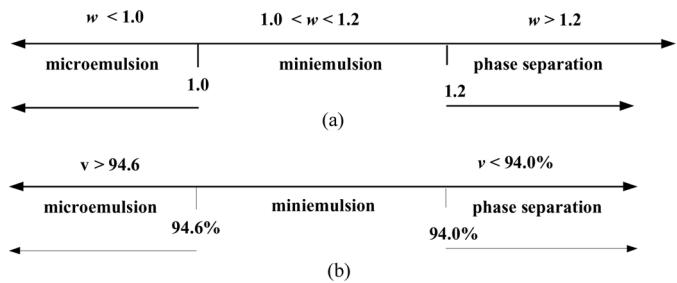


FIG. 9. (a) Water-to-PEG-PPG-PEG ratios (w) for the various emulsion systems, and (b) Volumes (v) of ethyl acetate corresponding to the various PEG-PPG-PEG emulsion systems.

are shown pictorially in Figs. 9a and 9b for water-to-PEG-PPG-PEG (w) and ethyl acetate volumes (v) in PEG-PPG-PEG emulsions, respectively.

Figure 10 is a dimensionless plot for general application of the various PEG-PPG-PEG emulsion systems in ethyl acetate. This dimensionless plot can be used to predict the various proportions of the water, PEG-PPG-PEG, and liquid CO_2 in a particular emulsion system.

The PEG-PPG-PEG is more soluble in water than the $\text{TX-100}^{\text{TM}}$ (14,16) and hence the PEG-PPG-PEG emulsion systems are expected to have a higher capacity for water. However, this was not the case; the $\text{TX-100}^{\text{TM}}$ emulsion systems rather had a higher capacity for water. Liquid CO_2 , having a smaller size, is known to solubilize very small molecules. The $\text{TX-100}^{\text{TM}}$ being smaller compared to PEG-PPG-PEG, one would expect the $\text{TX-100}^{\text{TM}}$ to have higher capacity for water. The low water capacity of the PEG-PPG-PEG emulsion is impacted by its larger size. The forces that exist in an emulsion system are mainly the

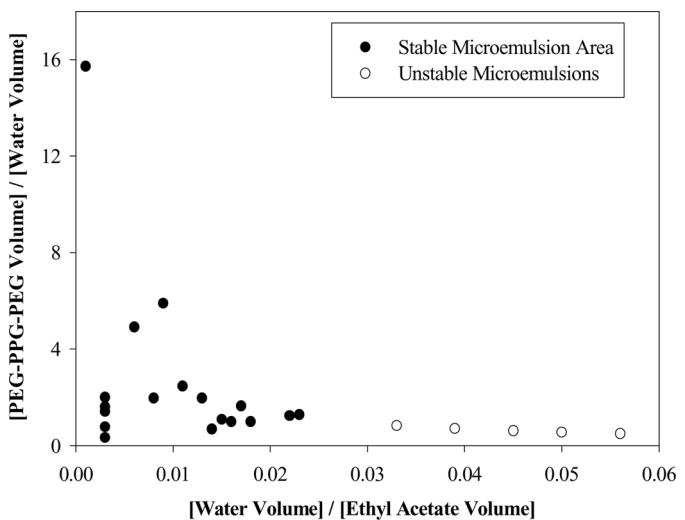


FIG. 10. Variation of ratio of $[\text{PEG-PPG-PEG volume}] / [\text{water volume}]$ with $[\text{water volume}] / [\text{ethyl acetate volume}]$ for stable and unstable microemulsion systems at room temperature.

weight of the water core, the attraction and repulsion among the cores and tails, respectively, and the density of the solvent. Because of the size differential, the PEG-PPG-PEG will form emulsions with the water core larger than that of the TX-100TM for the same amount of water. The higher micelle core weight is what overcomes the resultant attraction and repulsion forces at the same amount of water resulting in the lowering water capacity in stable emulsions.

CONCLUSIONS

The effect of temperature on the solubility of TX-100TM in liquid CO₂ is stronger than that of pressure. Ethyl acetate known to behave as liquid CO₂ has been used to predict the emulsion systems of TX-100TM and PEG-PPG-PEG. Irrespective of the nature of the surfactant, the stability of the emulsion is impacted by the bulkiness of the surfactant. The bulkiness of the PEG-PPG-PEG lowered the water capacity of the stable emulsion system. The low water capacity of the PEG-PPG-PEG emulsion system compared to that of the TX-100TM is attributed to its low capacity to solubilize hydrophilic substances.

ACKNOWLEDGEMENTS

This article was prepared with the support of National Science Foundation (NSF) Science and Technology of Environmentally Responsible Solvents and Processes under Cooperative Agreement CHE-9876674. However, any opinions, findings, and conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the NSF. The authors also express their appreciation to the Kenan Center for the Utilization of Carbon Dioxide in Manufacturing at the North Carolina State University for using their phase equilibrium analyzer.

REFERENCES

- McClain, J.B.; Betts, D.E.; Canelas, D.A.; Samulski, E.T.; DeSimone, J.M.; Londono, J.D.; Cochran, H.D.; Wignall, G.D.;
- Chillura-Martino, D.; Triolo, R. (1996) Design of nonionic surfactants for supercritical carbon dioxide. *Science*, 20 (274): 2049–2052.
- Mchardy, J.; Sawan, S.P. (1998). *Supercritical Fluid Cleaning: Fundamentals, Technology, and Applications*; Noyes Publications: New Jersey.
- Hakuta, Y.; Hayashi, H.; Arai, K. (2003) Fine particle formation using supercritical fluids. *Current Opinion in Solid State and Materials Science*, 7: 341–351.
- Palmer, M.V.; Ting, S.S.T. (1995) Applications for supercritical fluid technology in food processing. *Food Chemistry*, 52: 345–352.
- DeSimone, J.M. (2002) Practical approaches to green solvents. *Science*, 297 (5582): 799–803.
- Chen, H.; Obuskovic, G.; Majumdar, S.; Sirkar, K.K. (2001) Immobilized glycerol-based liquid membranes in hollow fiber for selective CO₂ separation from CO₂-N₂ mixtures. *J. Membr. Sci.*, 183: 75–88.
- Fulton, J.L.; Smith, R.D. Supercritical Fluids Reverse Micelle Separation. U.S. Patent 5,266,205, November 30, 1993.
- Jackson, K.; Fulton, J.L. (1996) Microemulsions in supercritical hydrochlorofluorocarbons. *Langmuir*, 12: 5289–5295.
- Riess, G.; Labbe, C. (2004) Block copolymers in emulsion and dispersion polymerization. *Macro. Rapid Comm.*, 25: 401–435.
- Tung, C.-C.; Yang, Y.-M.; Chang, C.-H.; Maa, J.-R. (2002) Removal of copper ions and dissolved phenol from water using micellar – Enhanced ultrafiltration with mixed surfactants. *Waste Management*, 22: 695–701.
- Anim-Mensah, A.R. (2001) Separation and recovery of liquid carbon dioxide without Phase change through enhanced micellar crossflow microfiltration, M.S Thesis, North Carolina A&T State University, NC.
- Photinon, K.; Boddu, A.; Ilias, S. (2003) Recovery of liquid CO₂ from cleaning solutions without phase change using ultrafiltration and microfiltration membranes. *Sep. Sci. Technol.*, 38 (12&13): 2951–2962.
- Yanic, C.; Bredenkamp, M.W.; Jacobs, E.P.; Spies, H.S.C.; Swart, P. (2000) NMR spectroscopy as basis for characterization of pluronic[®] F108 and its derivatives. *J. Appl. Polym. Sci.*, 78: 109–117.
- Carson, T.; Wells, S.L.; DeSimone, J.M. (2001) Surfactant for supercritical and near critical fluids. *Surfactant Sci. Ser.*, 100: 129–144.
- Liu, C.-B.; Gong, C.-Y.; Pan, Y.-F.; Zhang, Y.-D.; Wang, J.-W.; Huang, M.-J.; Wang, Y.-S.; Wang, K.; Gou, M.-L.; Tu, M.-J.; Wei, Y.-Q.; Qian, Z.-Y. (2007) Synthesis and characterization of a thermo-sensitive hydrogel based on biodegradable amphiphilic PCL-pluronic (L35)-PCL block copolymers. *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 302: 430–438.
- Zdziennicka, A. (2009) Adsorption and volumetric properties of triton X-100 and propanol mixtures. *J. Coll. Surf. Sci.*, 336: 423–430.